109 research outputs found

    Entirely irrelevant distractors can capture and captivate attention

    Get PDF
    The question of whether a stimulus onset may capture attention when it is entirely irrelevant to the task and even in the absence of any attentional settings for abrupt onset or any dynamic changes has been highly controversial. In the present study, we designed a novel irrelevant capture task to address this question. Participants engaged in a continuous task making sequential forced choice (letter or digit) responses to each item in an alphanumeric matrix that remained on screen throughout many responses. This task therefore involved no attentional settings for onset or indeed any dynamic changes, yet the brief onset of an entirely irrelevant distractor (a cartoon picture) resulted in significant slowing of the two (Experiment 1) or three (Experiment 2) responses immediately following distractor appearance These findings provide a clear demonstration of attention being captured and captivated by a distractor that is entirely irrelevant to any attentional settings of the task

    Visual onset expands subjective time

    Get PDF
    We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time

    Distortions of Subjective Time Perception Within and Across Senses

    Get PDF
    Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions

    Ambient light modulation of exogenous attention to threat

    Full text link
    Planet Earth’s motion yields a 50 % day–50 % night yearly balance in every latitude or longitude, so survival must be guaranteed in very different light conditions in many species, including human. Cone- and rod-dominant vision, respectively specialized in light and darkness, present several processing differences, which are—at least partially—reflected in event-related potentials (ERPs). The present experiment aimed at characterizing exogenous attention to threatening (spiders) and neutral (wheels) distractors in two environmental light conditions, low mesopic (L, 0.03 lx) and high mesopic (H, 6.5 lx), yielding a differential photoreceptor activity balance: rod > cone and rod < cone, respectively. These distractors were presented in the lower visual hemifield while the 40 participants were involved in a digit categorization task. Stimuli, both targets (digits) and distractors, were exactly the same in L and H. Both ERPs and behavioral performance in the task were recorded. Enhanced attentional capture by salient distractors was observed regardless of ambient light level. However, ERPs showed a differential pattern as a function of ambient light. Thus, significantly enhanced amplitude to salient distractors was observed in posterior P1 and early anterior P2 (P2a) only during the H context, in late P2a during the L context, and in occipital P3 during both H and L contexts. In other words, while exogenous attention to threat was equally efficient in light and darkness, cone-dominant exogenous attention was faster than rod-dominant, in line with previous data indicating slower processing times for rod- than for cone-dominant visionThis research was supported by the Grants PSI2014-54853-P and PSI2012-37090 from the Ministerio de Economía y Competitividad of Spain (MINECO

    Near or far: the effect of spatial distance and vocabulary knowledge on word learning

    Get PDF
    The current study investigated the role of spatial distance in word learning. Two-year-old children saw three novel objects named while the objects were either in close proximity to each other or spatially separated. Children were then tested on their retention for the name-object associations. Keeping the objects spatially separated from each other during naming was associated with increased retention for children with larger vocabularies. Children with a lower vocabulary size demonstrated better retention if they saw objects in close proximity to each other during naming. This demonstrates that keeping a clear view of objects during naming improves word learning for children who have already learned many words, but keeping objects within close proximal range is better for children at earlier stages of vocabulary acquisition. The effect of distance is therefore not equal across varying vocabulary sizes. The influences of visual crowding, cognitive load, and vocabulary size on word learning are discussed

    Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors

    Get PDF
    Multiple-object tracking (MOT) studies have shown that tracking ability declines as object speed increases. However, this might be attributed solely to the increased number of times that target and distractor objects usually pass close to each other (“close encounters”) when speed is increased, resulting in more target–distractor confusions. The present study investigates whether speed itself affects MOT ability by using displays in which the number of close encounters is held constant across speeds. Observers viewed several pairs of disks, and each pair rotated about the pair’s midpoint and, also, about the center of the display at varying speeds. Results showed that even with the number of close encounters held constant across speeds, increased speed impairs tracking performance, and the effect of speed is greater when the number of targets to be tracked is large. Moreover, neither the effect of number of distractors nor the effect of target–distractor distance was dependent on speed, when speed was isolated from the typical concomitant increase in close encounters. These results imply that increased speed does not impair tracking solely by increasing close encounters. Rather, they support the view that speed affects MOT capacity by requiring more attentional resources to track at higher speeds

    Gaze following in multiagent contexts: Evidence for a quorum-like principle

    Get PDF
    Research shows that humans spontaneously follow another individual’s gaze. However, little remains known on how they respond when multiple gaze cues diverge across members of a social group. To address this question, we presented participants with displays depicting three (Experiment 1) or five (Experiment 2) agents showing diverging social cues. In a three-person group, one individual looking at the target (33% of the group) was sufficient to elicit gaze-facilitated target responses. With a five-person group, however, three individuals looking at the target (60% of the group) were necessary to produce the same effect. Gaze following in small groups therefore appears to be based on a quorum-like principle, whereby the critical level of social information needed for gaze following is determined by a proportion of consistent social cues scaled as a function of group size. As group size grows, greater agreement is needed to evoke joint attention

    Numerosity Estimation in Visual Stimuli in the Absence of Luminance-Based Cues

    Get PDF
    Numerosity estimation is a basic preverbal ability that humans share with many animal species and that is believed to be foundational of numeracy skills. It is notoriously difficult, however, to establish whether numerosity estimation is based on numerosity itself, or on one or more non-numerical cues like-in visual stimuli-spatial extent and density. Frequently, different non-numerical cues are held constant on different trials. This strategy, however, still allows numerosity estimation to be based on a combination of non-numerical cues rather than on any particular one by itself.Here we introduce a novel method, based on second-order (contrast-based) visual motion, to create stimuli that exclude all first-order (luminance-based) cues to numerosity. We show that numerosities can be estimated almost as well in second-order motion as in first-order motion.The results show that numerosity estimation need not be based on first-order spatial filtering, first-order density perception, or any other processing of luminance-based cues to numerosity. Our method can be used as an effective tool to control non-numerical variables in studies of numerosity estimation
    corecore